National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Preconcentration of Trace Analytes on Modified Sorbents and their Determination on Waters
Holubová, Zuzana ; Čelechovská, Olga (referee) ; Holoubek,, Ivan (referee) ; Otruba,, Vítězslav (referee) ; Sommer, Lumír (advisor)
The work has been focused on the preconcentration techniques for determination of 9Be, 51V, 59Co, 60Ni, 89Y, 111Cd, 208Pb, 232Th and 238U on the modified sorbents, all measurements were performed on ICP-MS. The instrument setup was optimized. The solution of internal standard (200 µg•l-1) was used during all measurements. The internal standard were chosen as follows: 6Li for 9Be, 45Sc (51V), 72Ge (59Co, 60Ni, 89Y), 103Rh (111Cd), 209Bi (206Pb, 207Pb, 208Pb, 232Th and 238U). Another parameters such as influence of mineral acids (HCl, HNO3), surfactant (Septonex®, Zephyramin, Ajatin, Brij 35 and Sodium dodecyl sulphate) and organic reagents (Ammonium pyrrolidinedithiocarbamate, 8-Hydroxyquinoline-5-sulphonic acid, 1,2-Dihydroxyanthraquinone-3-sulphonic acid and 4-(2-Pyridylazo)resorcinol) and the effect of some matrix components on intensity of instrument signal determination was investigated. For preconcentration polar Silicagel and modified nonpolar Silicagels (Silicagel-C18, C8 nad Phenyl) were used. Another experimantal part was dedicated to preconcentration on nonpolar Amberlite XAD-16 and Strata SDB-L and intermediately polar sorbent Amberlite XAD-7. Recoveries of sorption process were observed in the presence of all testing types of surfactants in certified concentration 5•10-4 mol•l-1. Surfactants were always applied in the conditioning step. The suitable combinations of surfactant and organic reagent were tested for increasing of recoveries of analytes. Testing organic reagents were added in five times mass excess againts concentration of analytes, the concentration of the organic reagents was 900 µg•l-1. The organic reagent was always added to the solution for preconcentration before this solution was led on the sorbent. The composition and a necessary volume of elution mixture for quantitative elution were tested, too. Only one sorbent was chosen from each group of sorbents with similar properties. The chosen sorbent showed the best recoveries in majority of target analytes. The highest recoveries from silica-group was reached for Silicagel-C18, from nonpolar Amberlite was chosen Strata SDB-L and intermediately polar Amberlite XAD-7. The influence of some matrix components (anionts and cations) on recoveries of analytes was investigated for chosen sorbent. The optimized process was applied on real samples of nature water and industry water. In experimental part all analytes are marked as specific izotopes, which were measured by ICP-MS. Of course, all izotopes of analytes undergo preconcentration techniques.
Research of the effect of desicants on moisture adsorption
Němec, Mojmír ; Lisá, Hana (referee) ; Elbl, Patrik (advisor)
Desiccants are special materials that can effectively adsorb moisture from the surrounding air or space. Desiccants such as silica gel or molecular sieve are often used in laboratory applications, for example to determine the properties of solid fuels. The introduction of the research section is devoted to the description of these properties. The thesis then describes the methods used to accurately determine the moisture in solid fuels. The main part of the thesis is devoted to desiccators together with desiccants, which form a significant part in the process of determining moisture in solid fuels. The experimental part deals with the investi-gation of the effect of different desiccants on the rate of air moisture depletion in the desic-cator under laboratory conditions. The moisture loss in the desiccator is measured using the SHT4x Smart Gadget, which is placed in the desiccator together with the desiccant. The out-put of the experimental measurements are the moisture uptake rate curves of different desic-cants for desiccant weights of 50 g, 100 g, 150 g, 200 g and 250 g. At the end of the thesis, the measured curves of the different desiccants are compared with each other in terms of efficiency.
Preconcentration of Trace Analytes on Modified Sorbents and their Determination on Waters
Holubová, Zuzana ; Čelechovská, Olga (referee) ; Holoubek,, Ivan (referee) ; Otruba,, Vítězslav (referee) ; Sommer, Lumír (advisor)
The work has been focused on the preconcentration techniques for determination of 9Be, 51V, 59Co, 60Ni, 89Y, 111Cd, 208Pb, 232Th and 238U on the modified sorbents, all measurements were performed on ICP-MS. The instrument setup was optimized. The solution of internal standard (200 µg•l-1) was used during all measurements. The internal standard were chosen as follows: 6Li for 9Be, 45Sc (51V), 72Ge (59Co, 60Ni, 89Y), 103Rh (111Cd), 209Bi (206Pb, 207Pb, 208Pb, 232Th and 238U). Another parameters such as influence of mineral acids (HCl, HNO3), surfactant (Septonex®, Zephyramin, Ajatin, Brij 35 and Sodium dodecyl sulphate) and organic reagents (Ammonium pyrrolidinedithiocarbamate, 8-Hydroxyquinoline-5-sulphonic acid, 1,2-Dihydroxyanthraquinone-3-sulphonic acid and 4-(2-Pyridylazo)resorcinol) and the effect of some matrix components on intensity of instrument signal determination was investigated. For preconcentration polar Silicagel and modified nonpolar Silicagels (Silicagel-C18, C8 nad Phenyl) were used. Another experimantal part was dedicated to preconcentration on nonpolar Amberlite XAD-16 and Strata SDB-L and intermediately polar sorbent Amberlite XAD-7. Recoveries of sorption process were observed in the presence of all testing types of surfactants in certified concentration 5•10-4 mol•l-1. Surfactants were always applied in the conditioning step. The suitable combinations of surfactant and organic reagent were tested for increasing of recoveries of analytes. Testing organic reagents were added in five times mass excess againts concentration of analytes, the concentration of the organic reagents was 900 µg•l-1. The organic reagent was always added to the solution for preconcentration before this solution was led on the sorbent. The composition and a necessary volume of elution mixture for quantitative elution were tested, too. Only one sorbent was chosen from each group of sorbents with similar properties. The chosen sorbent showed the best recoveries in majority of target analytes. The highest recoveries from silica-group was reached for Silicagel-C18, from nonpolar Amberlite was chosen Strata SDB-L and intermediately polar Amberlite XAD-7. The influence of some matrix components (anionts and cations) on recoveries of analytes was investigated for chosen sorbent. The optimized process was applied on real samples of nature water and industry water. In experimental part all analytes are marked as specific izotopes, which were measured by ICP-MS. Of course, all izotopes of analytes undergo preconcentration techniques.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.